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Thermal parameter control based on

time series adaptive PID control

SHUANGXI GAO', X1 L1**

Abstract. For the problem that optimal parameters is difficult to determine in the progress
of ADRC(Active disturbance rejection controller), a ADRC parameter adjustment algorithm based
on the estimation of sampling probability distribution is proposed. Firstly, parameter optimiza-
tion controller is established in the linear ADRC process, and the ITAE result is used as a sub
item on system dynamic performance for evaluation; then, for NP hard optimization problem in
the parameters of ADRC controller, construct estimation of probability distribution of sampling
probability based on Gibbs sampling probability model, improve the universality of the population
in the estimation of distribution, and construct individual sampling structure for excellent learning
samples, which improves the optimization performance of the algorithm; finally, reach standard test
functions of the sampling probability distribution estimation to verify the validity of the proposed
control algorithm, and use proposed control algorithm to establish overheated steam temperature of
boiler control system model. The result shows that the optimized control system has good control
performance and robustness.

Key words. ADRC optimization, Sampling probability, Distribution estimation, Parameter
adjustment.

1. Introduction

The ADRC proposed by scholar Han Jingqing is a nonlinear type controller [1,
2]. Tt considers the different forms of disturbance existing in the inner and outer
parts of the model as the total disturbance, and uses the extended type observer
to realize the compensation and estimation of the total disturbance. Therefore, the
ADRC controller can be used to solve the system uncertain control object [3, 4] with
nonlinear characteristics. In the ADRC control, the parameter setting determines
the performance of its controller. There are many parameters involved in the opti-
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mization of active disturbance rejection control parameters. If we only rely on the
designer’s experience, ADRC parameter tuning is time-consuming, and it cannot en-
sure that the system has the best response. Therefore, the optimization of controller
parameters in ADRC control is a hot issue in the research. The literature [8] based
on active genetic algorithm (AGA) reaches the optimization of ADRC parameters,
which can solve the multi-parameter tuning problem of ADRC controller; literature
[9] uses the proposed cloud clonal chaos method to realize ADRC controller param-
eter tuning effectively, which can achieve good control performance; literature [10]
uses the multi-target parameters optimization method to reach hybrid optimization
ADRC controller, which can effectively achieve the linear parameters setting. The
above algorithm has achieved certain results in improving the performance of ADRC
control. Based on the above research, we consider the use of Estimation of distri-
bution algorithm (EDAs) to further improve the performance of ADRC parameter
optimization. The distribution estimation algorithm was first proposed by the lit-
erature [11], and then different versions of the improved algorithms, such as the
literature [12], have been designed to improve the performance of the algorithm.

At present, the research results of distributed estimation algorithms are rela-
tively few in domestic researchers. From the perspective of innovation, this paper
considers the use of EDAs algorithm as an optimization tool for ADRC controller
parameters tuning. Considering to use Gibbs sampling in distribution estimation
algorithm to improve algorithm, and construct probability condition distribution of
Markov chain, we can effectively obtain approximate asymptotic joint distribution
probability, realize the sample learning to enhance the quality, and thus enhance
the estimation of distribution process results. The proposed algorithm for Gibbs
sampling algorithm is based on probability distribution (Gibbs sampling probability
distribution estimation, SPEDA). Then the model of the boiler superheat tempera-
ture control system is established by using the proposed SPEDA control algorithm.
The results show that the performance of the temperature control system can be
improved effectively.

2. Linear ADRC optimal control
2.1. ADRC control

In the two order typical linear structure of the distributed estimation controller
(as in Figure 1), y and r are the output signals and the input setting signals of the
distributed estimation controller, respectively. U is the input of the control law of
the distribution estimation, and the d is an additional unknown disturbance, and
G, is the control object of the distributed estimation system. The ESO module in
the figure is the extended state observer for the control system.

In the block diagram of the linear two order ADRC control shown in Figure 1,
the state extended observer ESO module can be represented as the following form :
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Fig. 1. Block diagram of linear two order ADRC control

2 =2+ Py — 21)
29 = 23+ Pa(y — 21) + Bu (1)
23 = P3(y — 21)

In the formula, 51, B2 and (3 are the optimization setting parameters of the
ADRC system . The control object of the two order system can be expressed as:

y:f(tayava)+Bu' (2)

In the formula, f is ADRC gross error of system. y, ¢ and §j are the real states
of controlling the existence of the object., first order differential state and two order
differential state. z1, 2o and z3 severally are state observation value of y, ¥ and
f. w(t) is uncertain disturbances existing in the ADRC system, f is expression of
uncertain perturbation function, B is ADRC system controller parameter.

The linear two order control rate of the ADRC system can be expressed as the
following function form:

ug = k1(r — z1) — kaz
uO: (u; —23)/B 22 (3)

When adopting ESO template for getting z3 ~ f, it can get closed loop expected
transmission form as:
y(s) ks

f . 4
r(s) s+ kes—+k )

For the problem of multi parameter optimization in the linear optimal ADRC
control, literary[13] decreases the setting parameters in the formula(4), from B, k1,

ko, B1, B2 B3 to B, ki, kg, wo.

2.2. FEwvaluating indicator
The ITAE index is used to dynamically evaluate the performance of ADRC con-

trol system, that is to say, the absolute error value is multiplied by the integral form
of time to build the evaluation performance index as:

Trrap = /0 S et 5)
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In order to improve the performance of ADRC control system, we need to consider
comprehensively the stability, rapidity and accuracy of the system operation. It is
reflected in the evaluation performance index that the overshoot Sigma and the
control rise time tr are considered in the control index. At the same time, if only
the dynamic characteristics of the system as the pursuit of goals, need to transfer
control signal is very strong, but it is in the system, the control object also has a
certain saturation characteristic, control effect to difficult to achieve, it will cause
a decline, the control performance of the proposed algorithm in this regard, in the
performance evaluation in the comprehensive consideration of energy control u, the
evaluation function can be rewritten as the following form

J = Asgtr + /000 O\t [e()] + Aa [u(®)] + Aa |o)dt . (6)

In the formula(6): A1, A2 and A3 separately are the equilibrium coefficient of the
control index. For the optimization of the control index, the sampling probability
distribution estimation algorithm is considered to be optimized, and the specific
algorithm and its improved form will be described in the next section.

3. Sampling probability distribution estimation
3.1. Gibbs sampling description of the algorithm

The algorithm of EDAs is how to build the probability distribution model more
efficiently and construct the method of sample and training for the corresponding
model. But the standard form of EDAs algorithm has two obvious shortcomings: (1)
the dimension constraint problem; the sample data with high dimension exist obvious
high coupling situation; (2) unsupervised training has not ideal algorithm accuracy.
To this end, we use the sampling probability model to build a new improved version
of the EDAs algorithm.

If X is a given random high dimensional vector data, the joint probability den-
sity of the vector data can be expressed as fx (z). Because this probability den-
sity has some irregular random properties, it cannot be built directly. The way to
solve the problem is to build a in| X (@) (% | x(i)) model of probability distribution.
Use Gibbs sampling method, establish probability conditional distribution model
f X X0 (acl ’x(i)) featured Markov chain, and achieve the control effect of gradually

approaching the joint probability distribution model fx (z).

The Gibbs algorithm is sampled for each variable, according to the probability
distribution characteristics of the data and the current conditions of the population,
the population by randomly to form new, using this method to build the Markov
distribution chain sampling sequence, the probability distribution can be the steady
probability of this sample sequence is based on the joint distribution of the time aver-
age approximation ¢ (X), statistic average approximation based on its mathematical
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description can be expressed as follows:

T
liqub(X(t))/TE{sb(X)}- (7)

In the formula (7), mathematical formulas can express the generated Markov
chain sequence samples. The data sequence is the same as the samples sampled
directly in the joint distribution model. The Gibbs sampling algorithm flow is, as
described in the pseudo code 1 process.

1. Input data parameters: N, P {XZ- |X(i) };
2. Initialization sampling process.:
P =0,z (0) ~Uniform(S);
3. Iterative execution process:
fort=1~(Ko+ N) do
fori=1~D do
x; (t) ~ P(XZ |x1 (t),--- ,Ti—1 (t),mi+1 (tf 1),--- ,TD (tf 1));
End for
End for
4. Output result data:
if t > Ko then P=PU{x(t)};

The purpose of selecting parameters At = D in the Gibbs sampling procedure
shown in pseudo code 1 is to ensure that the component of the algorithm has the
Gibbs first sampling feature. The computational complexity of the above Gibbs
sampling procedure algorithm can be expressed as O ((D2 + N ) . D).

3.2. Sample sequence training

According to the supervised training mode of the sample, the self-learning ad-
justment process of the execution parameters can be expressed as follows:

Q; = {(x(i)mci) |z € P} . (8)

In the formula(8), do parameter estimation for probability conditional model
Fx1x (:131 |:1:(’)). (x(l),xi) represents the selected sequence of samples z(*) mean

expectation is x;. In order to simplify algorithm, assume X;’s value space is X; €
{—1,1}. So probability conditional model in|X(i) (Jh ’x(l))as estimation step can

be expressed as:

Stepl: The sample classifier is constructed with the sample sequence Q; and the
corresponding classification algorithm;

Step2: Estimation of parameter distribution of probability conditional model
in‘ X (@) (xl |x(i)) by using the constructed sample classifier
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The form of the classified interface can be defined as follows:

g= arggleig{ZL(y,g(w))} :
Q

9)

In the formula (9), @ = {(x,y)} is a supervised sequential form for samples.
L (y,g(x)) set for the loss data of the sample data, G sets the function candidate
and its function is shielding the output of the classification data from the undesirable
data. The constructed classification interface can be expressed as a form. Then the
probability condition estimation model can be expressed as:

P(Y[X)~exp[-L(Y,9(X))]

(10)

In the formula(10), based on the foregoing loss function and combining the maximum
likelihood type function of the classification process, the equivalent model of the
model (10) can be obtained, which is as follows:

g = argmax II Pl
(z,y)€Q

3.3. Algorithm calculation process

Pseudo code 2: Sampling probability distribution estimation

1. Algorithm initialization:
P={z@()]i=1,--- ,N},z (i) ~Uniform(S), Popt = 0;
2. Executing iterative process:
// Optimization
for ep =1 : epoch do
o* = argmax {eval (2)};  Popt = Popt U{a"}; P =P\{a"};

End for

//study
for i =1: Ddo

Py ={(2,2;) [& € Popt }; gi = argmin {EL(y,g(r))} ;
9€9 (g;
P (X; | X®) ~exp (—L (Xi,9 (X)) ;
End for
//sample
Prew = sample (N — No, {]5 (Xz !X(Z) )}) ;
//renewal
P:Pnewupopt; Popt:Q);
3. Output algorithm :

Topt = arg mal):,( {eval (z)};  fitopt = eval (Topt) -
xTe

(11)
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Suppose (Zopt, fitopr) = IEDA (eval) is model expression form of EDAs algo-
rithm, eval in the model expresses evaluation indicator, so improved EDAs algorithm
calculation process as pseudo code states.

Based on the data cut-off method, a sequence updating form is constructed, then
the fitness difference individuals are eliminated, and a new sample is constructed
based on probability sampling model to achieve the replacement of fitness difference
individuals. (N — Np)/N can be defined as the elimination ratio of the population
of the population.

4. Experimental analysis
4.1. EDAs algorithm performance evaluation

Select the commonly used two standard test functions based on the compara-
tive analysis of the experiment, the experiment software platform: the host system:
Ultimate win7, test software: matlab2012a, selected host processor: i5-5440k CPU,
RAM is selected as the host memory: 4G DDR3 1333. The experimental perfor-
mance comparison method selects the classical EDAs algorithm and the environment
recognition EDAs algorithm (EIEDA), which is described in the literature [12]. The
selected standard test examples can be expressed as follows:

n

X)) =Y (100 (i1 —2)” + (2 — 1)2) . (12)

=1
/ 4000. (13)

fo(X)= lix?—ﬁcos (xl/\ﬁ) +1

The selection of experimental parameters: the algorithm termination algebra
is set to 300, the termination threshold is set lg (f) = 1077, the population size
is set to 1024, and the population elimination rate is set to 0.5. The population
size of the algorithm is set to 1024, mainly because the data dimension of the sub
problems involved in this experiment is n; < 6, in other words, the size of the
problem subspace is m < 64, and the scale of 1024 species meets the requirements of
dimension degradation. Based on the above parameter setting, the interval coverage
of the EDAs algorithm is approximately 100 x 1024 ~ 105. We use the test function
(12) to carry out experiments, and select two dimensions of data in two dimensions
and three dimensions respectively to perform algorithm optimization and simulation,
and make graphic presentation, as shown in Figure 2.

In the figure 2, For the test function (13) in the form of three dimensional (n = 3),
using the proposed EDAs to improve the distribution estimation of the population
optimal individual evolution. It is the data evolution of SPEDA algorithm, which is
based on the current optimal value of interval algebra. Based on the three dimen-
sional evolutionary image schematic diagram, the SPEDA algorithm can avoid the
local merit point effectively and gradually converge to the global best value point.
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Fig. 2. Three dimensional evolution

Figure 3 (a~b) shows that the contrastive contrast of the three contrast algo-
rithms, which are EIEDAsSEDAs and SPEDA, on the standard test function (11~12).
It is assumed that the initial search interval of the algorithm in the process of ex-
periment is z € [0,1], y € [0, 1], n = 10.

0
~
2 e~
\.‘~ - \
® 4 EDAs
= SPEDAs
G oo EIEDASs
-8 .
0 100 200 300
t
(a) Test function(11)

g
= — - — EDAs

-6 —— SPEDAs

--------- EIEDAs
-8
0 100 200 300
t
(b) Test function(12)

Fig. 3. Algorithm convergence contrast
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From figure 3a we can know, the proposed SPEDAs algorithm compared with
EIEDAs algorithm and EDAs has significant performance advantages, when the
SPEDASs algorithm to the 283rd step, the algorithm reaches the set threshold 1g (f) =
1077, the iterative evolution accuracy of EIEDAs algorithm is only Ig (f) ~ 1074,
and the iterative evolution accuracy of EDAs algorithm is lg (f) ~ 102, which re-
flects the convergence rate of SPEDAs method. From Figure 3B, we can see that
three contrasting methods such as EIEDAs, EDAs and SPEDAs will produce prema-
ture phenomenon on a precision value, and they do not converge to the termination
threshold Ig (f) = 10~7. They all stop iterating at the 300 place of final value algebra.
But the convergence accuracy of SPEDAs algorithm is approximately lg (f) ~ 1072,
and the convergence accuracy of EDAs and EIEDAS iterative optimization is about
lg (f) ~ 10~%. In general, EDAs algorithm is better than EDAs algorithm. The
experimental data verify the performance effectiveness of the proposed SPEDAs
algorithm in computational accuracy and computational efficiency.

4.2. Optimization of boiler temperature control process

Experimental setup: According to the experimental comparison of boiler tem-
perature control process optimization mentioned in document [14], the setting of
control load is 75%, and the ADRC control system adopts cascade control, assum-
ing that the proportion of secondary control loop is set to 100. First, the effective
reduced order reduction of the control loop is realized based on two point crossover,
and the first order approximate lagging object is obtained:

1.195 6—159.0515 .

G(s) = 1381835 7 1

(14)

According to the literature[14], the H infinite PID robust controller is used to
control, the H infinite PID control parameters obtained is: K; = 0.0043 , Kp =
0.908, Kp = 45

Objective optimization experiment: The zero order coefficient of the molecule
in the expression of the control object in its transmission model is 1.195. According
to the method described in document [15], the PID control parameters are corre-
spondingly rewritten as ADRC control parameter form, and four initial values of
pending parameters are obtained. Then, the SPEDAs algorithm is used to optimize
the transformed ADRC control parameters. The contrast algorithm still selects two
algorithms, EIEDAs and EDAs. The iterative evolution process of the optimized
target J is shown in Figure 4 contrast curve.

According to the figure 4, as the iterative evolution process of the algorithm
continues, the SPEDAs algorithm has a faster convergence rate than the two contrast
algorithms. And compared with the two algorithms of EIEDAs and EDAs, the
SPEDAs algorithm has a higher convergence accuracy.

Step response simulation: On the basis of the above control parameters opti-
mization, we use the three optimized algorithms to control the parameters of ADRC
controller to compare the step signal control effect in the control process. The opti-
mal control parameters of the three algorithms are shown in Table 1.
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Fig. 4. Target J optimization curve

Table 1. ADRC step response parameters

algorithm B wo k1 ko
EDAs 0.1422 1.0544 0.0017 0.3266
EIEDAs 0.1292 0.9874  0.0024 0.3269
SPEDAs  6.5113e-4 0.0138 0.0026  3.4049e-4

Using the ADRC controller shown in Table 1, we control the step signal in the
control process, and the control curves of the three algorithms of SPEDAs, EDAs
and EIEDAs are shown in Figure 5.

According to the control curve shown in Figure 5, using ADRC SPEDASs opti-
mization controller is designed in this paper, for the control of ADRC linear system
response speed and overshoot compared to the best, the overshoot is smaller EDAs
and EIEDAS, helps to improve the stability of the control system, has better control

effect.

System output signal
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Fig. 5. System output signal under step corresponding

Robust stability analysis:In the actual boiler temperature control, the situa-
tion of control parameter ca not be determined. Here we use stochastic Monte-Carlo
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to construct control robustness performance evaluation of ADRC linear system. The
ADRC control parameters are changed in +10%, and the control indexes of ¢, and
sigma 0% are compared. The experiment process of the Monte-Carlo is repeated
100 times, and the experimental results are shown in Figure 8.

The sigma 0% is used as the abscissa, and ¢, is used as the ordinate. The point
distribution shown in Figure 6 is a group of two dimensional data combinations.
The better the degree of concentration of the data points shows, the stronger the
robust control of the algorithm. According to the data shown in Figure 6, we can see
that the data distribution of ADRC system based on SPEDAs algorithm is the most
concentrated, which indicates that the ADRC system based on SPEDAs algorithm
is more robust.
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Fig. 6. Robust stability comparison

5. Conclusion

A series of experiments are carried out to evaluate the performance of time-
delay systems with ADRC controller. The purpose is that test the applicability of
PSODE algorithm to automatically optimize ADRC parameters. The simulation
results verify the effectiveness of the proposed algorithm, and prove that the algo-
rithm proposed in this paper, which enhances the robustness of the control system
and improves the control ability of the control system.
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